
Theory of critical phenomena in fluids

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 SA121

(http://iopscience.iop.org/0953-8984/2/S/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 11:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/S
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) SA121-SA125. Printed in the UK 

Theory of critical phenomena in fluids 
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Abstract .  We discuss a differential approach to the theory of fluids, the hierarchical 
reference theory, which, above the critical temperature, has been shown to be (i) as 
accurate as the most widespread theories of liquid state in the high density region 
and (ii) able to reproduce the renormalization group results in the critical region. In 
this region it predicts both the universal and the non-universal quantities. We have 
studied the Lennard-Jones fluid in detail but the method can be directly applied 
to more realistic interactions between molecules. The treatment of temperatures 
below the critical one presents some additional difficulties due to the presence of 
the (inhomogeneous) twephase region. Preliminary results indicate that our theory 
gives the coexistence curve with the correct scaling behaviour without any need for 
an ad hoc  Maxwell construction. The extension of the formalism to binary mixtures 
is under way. 

1. Introduction 

The  accurate description of equilibrium properties of simple fluids has been one of the 
major goals of liquid state theory in the past decades. The  most sophisticated liquid 
state theories are now able to achieve an accuracy better than 2% both in thermody- 
namics and correlations in most of the phase diagrams for simple and isotropic systems 
[l]. Careful tests against numerical simulations have shown tha t  integral equations 
have now reached the level of confidence which allows the study of very detailed ques- 
tions such as the accuracy of intermolecular pair potentials in dense phases, or the 
extent of many-body forces in simple fluids [a]. 

An exception to this positive situation is in the region of the critical point of the 
liquid-vapour phase transition. 

Large-scale fluctuations, which are essentially neglected in the integral equation 
approach, play an  important role in the system only near the phase transition region. 
In fact they are responsible for the universal, and non-mean field, features of the 
critical regime, as well as for the convexity of the free energy below the liquid-vapour 
coexistence curve. Therefore, it  is not surprising tha t  liquid state theories fail t o  
reproduce the correct behaviour of the system in these regions of the phase diagram [3]. 

The crucial role of fluctuations in the critical region has been recognized by the 
renormalization group (RG) approach which represents the only accurate method for 
taking into account their effects in a consistent way [4]. The  RG has been able to 
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explain the observed universality of critical phenomena and to  provide quantitative 
estimates for the critical exponents and other universal properties in the critical region. 
Unfortunately, the RG cannot be directly used within liquid state theory because it 
needs a preliminary coarse graining onto the system in order to trace out fluctuations 
at  short wavelengths. This prevents the combining of the powerful methods of field 
theory with the accurate approaches devised in the framework of liquid state theory. 

In the following we briefly review the basic ideas which lead us to  the formulation of 
a liquid state theory, the hierarchical reference theory of fluids (HRT), which is able to 
describe accurately the critical region [5]. We present evidence in favour of this claim 
by comparing the results of the theory with numerical simulations and experiments 
on rare gases [ 6 ] .  The problems related to  the coexistence region are also addressed 
and preliminary results are shown. 

2. Theory 

Following the procedure described in [5], we consider a sequence of systems (Q- 
systems) defined by the two-body interaction u e ( ~ )  which interpolates between a re- 
pulsive singular reference potential vR(r) = lime,, v Q ( r )  and the physical interaction 
u(r) = vR(r) + ~ ( r )  which is recovered in the limit Q ---$ 0. More precisely: 

where the Fourier transform of we(?+) is 6Q(q) 

for q > Q 
for q < Q .  

6 Q ( q )  = { :(') 
The role of the parameter Q is to depress density fluctuations of wavevector k < Q .  
Therefore the family of Q-systems can be also considered as a sequence of approxima- 
tions to  the fully interacting system where fluctuations on length scales larger than 
1/Q are depressed. In this respect, our approach is similar in spirit to  the RG pro- 
cedure, where fluctuations are introduced selectively on the wavevector, but i t  differs 
from some implementations of the RG because degrees of freedom are not eliminated 
and information on all length scales is retained at  each step. 

The Helmholtz free energy de of systems characterized by different values of the 
parameter Q are related by a differential equation involving the two-particle correlation 
function of the Q-system. The same procedure can be repeated for the correlation 
functions thereby generating an exact hierarchy of differential equations which describe 
the change in the physical properties of the system when Q is decreased. We have 
studied an approximate closure to  this hierarchy which is obtained by expressing 
the two-particle direct correlation function CQ of the Q-system in terms of the density 
derivative of the free energy itself. In fact, in close analogy to  the well known optimized 
random-phase approximation 111 (ORPA), we set 

for T > d ,  while CQ(v) ,  for r < d ,  is determined by the condition of a vanishing radial 
distribution function of the Q-system (core condition) which is rigorously valid for 
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potentials containing a hard core term of diameter d.  The parameter XQ in (3) is 
determined by the compressibility sum rule which reads 

This last thermodynamic constraint is essential for an accurate description of the 
critical region because i t  couples the direct correlation function to  the free energy of 
the fluid in a non-trivial way, introducing non-linearities in the evolution equation 
which now becomes a partial differential equation. In fact in [5] we showed that ,  
provided the approximate form for C Q ( k )  is analytic in I C 2  and equation (4) is satisfied 
for every &, the resulting free energy satisfies scaling laws in the critical region, with 
critical exponents given by 

in three dimensions. Moreover near four dimensions the critical exponents has been 
proven correct [5] to  leading order in E = 4 - D. 

Such a theory contains, a t  the same time, the basic ingredients which allow for a 
good description of short-range correlations in dense fluids (ORPA, (3)) and of long- 
range correlations in the critical regions (RG structure). We therefore expect this 
approach to  give a realistic description of the thermodynamics and correlations in the 
whole phase diagram of the system. Extension of this formalism to binary mixtures 
is straightforward and gives rise to  an evolution equation for the free energy which 
is coupled both to  density and concentration fluctuations. The analysis of such an 
equation along the same lines we have just reviewed is currently under way. 

3. Comparison with experiments-above T ,  

We have applied our theory t o  the Lennard-Jones fluid: vLJ(r) = 4c[(a/r)12 - 
and uLJ is split with the WCA [l] rule. The repulsive part of the interaction is replaced 
by the hard-sphere potential with a state-dependent diameter d ( p ,  7') given by the AWC 
prescription [l]. Our estimate for the critical point is p* = 0.3155 and T,' = 1.3330 
(in units of € / I C B ) .  These values have to  be compared with the simulation estimates 
[7] TZ = 1.31 and p* = 0.31. A detailed comparison with experimental data  on 
rare gases and with numerical simulations has been published separately [6]. The 
agreement between theory and experiments is good both for the compressibility and 
for the correlation length as shown in figure 1. Preliminary results [9] of our theory 
in the case of a more accurate pair interaction for krypton plus three-body forces are 
also shown in the same figure. 

In order to  assess the quality of our approximations for correlation functions, we 
compare HRT results with simulations [lo] performed for the LJ potential and one such 
comparison is shown in figure 2. The nice agreement we find shows that ,  within our 
approach, it is possible t o  obtain the typical accuracy of a good liquid state theory (like 
ORPA) outside the critical region and, a t  the same time, the correct scaling behaviour 
near the critical point. This feature is not shared by any other liquid state theory. 

Up to  now, the numerical analysis of HRT equations has been confined to  the region 
above the critical isotherm. This limitation is due to the fact that  (4) involves density 
derivatives and, in the coexistence region, these derivatives might be negative inducing 
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Figure 1. Reduced isothermal compressibility S(0)  and correlation length 5 as a 
function of the reduced temperature t = (T  - Tc)/Tc on the critical isotherm. HRT 
results ( 0 )  for LJ potential and (U) for an accurate pair interaction (Kr) plus three- 
body terms. Fit [SI of experimental data in Xe (--). 
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Figure 2. Radial distribution function for a LJ system at p* = 0.5 and T* = 1.36 
as given by HRT (-) and simulation [lo] ( 0 ) .  

numerical instabilities in our algorithm. However, a careful integration of the partial 
differential equation shows that it does not have spurious singularities below T,. On 
the contrary, the theory is able to guarantee the convexity of the free energy in a self- 
consistent way, without the ad hoc Maxwell construction used in other formulations. 
In figure 3 we plot the inverse compressibility as a function of p - pc for an  isotherm 
below the critical temperature. The  calculation so far has been performed for the 
simplest model which retains the full complexity of the original problem (basically a 
44 field theory). 

From figure 3 we conclude that the introduction of fluctuations strongly flattens 
the inverse compressibility in the region where ‘unstable’ (or ‘metastable’) behaviour is 
predicted at a mean field level. The  density a t  coexistence can be accurately evaluat,ed 
from our numerical solution as the end point where S(O)-l = 0 and is shown to scale 
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Figure 3 .  Inverse compressibility l/S(O) as a function of density (in arbitrary 
units) along an isotherm below the critical temperature for a 4* theory. Results are 
symmetric around the critical density. Mean-field result (- - -), before fluctuations 
are introduced, and final HRT prediction (---). The region where l / S ( O )  is negative 
is thermodynamically unstable. 

with temperature following the expected power-law behaviour: p,,,,/p, - 1 2~ AtP 
where t is the reduced temperature and /3 = 0.345 (see (5)). 

The inverse compressibility should exhibit a discontinuity across the coexistence 
curve but,  from our preliminary results, we are not able to  evaluate the amount of 
this discontinuity because the numerical algorithm tends to enforce the continuity of 
the solution. Further analysis on this very interesting issue is in progress. 
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